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Our experimental study is devoted to the transition to defect turbulence of a periodic spiral wave pattern
occurring in the flow between a rotating and a stationary disk. As the rotation rateV of the disk is increased,
the radial phase velocity of the waves changes its sign: The waves that propagate first outward on average, then
become stationary and finally propagate inward. As they become stationary, the nucleation of topological
defects breaks the periodicity of the pattern. For higherV, more and more defects are generated in the flow
pattern. This article presents the statistical study of this defect mediated turbulence.
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I. INTRODUCTION

One known scenario of transition to turbulence in ex-
tended systems is related to the nucleation of defects in pe-
riodic patterns [1,2]. This is the case for instance in
Rayleigh–Bénard convection[3], in binary mixture convec-
tion [4], in Taylor–Dean system[5], or in electroconvecting
nematics[6]. Topological defects in wave patterns have also
been identified numerically in coupled amplitude equations
[7], and a particular type of hole have even been found in the
complex Ginzburg–Landau equation(CGLE) [8]. The
mechanism of the transition from phase to defect chaos has
been studied by Coulletet al.[9], who concluded that a to-
pological defect was created by a diverging phase gradient.
Bruschet al.[10] found that periodic coherent structures of
the CGLE, called modulated amplitude waves(MAWs),
evolved toward defects, as the period of these MAWs
reached a critical minimum value.

We present in this article a study of the flow between a
rotating and a stationary disk, a configuration which is of
great interest from a fundamental point of view but also has
many applications in turbomachines for instance. Moreover,
rotating disk flows are often considered as model flows for
the study of general three-dimensional flow instabilities. Our
results may then be interesting for the understanding and the
control of the transition to turbulence in boundary layers,
pipe flows, or mixing layers for instance. In our experimental
work, topological defects appear in a periodical wave(or
roll) pattern appearing in the flow between a rotating and a
stationary disk, through the local disappearance of a roll, or
through the connection of two systems of rolls of different
orientations. As the disk rotation rateV is increased, the
number of these defects increases, and above a certain sec-
ondary thresholdVTS equal to 45 rpm(revolutions per
minute) in the present configuration, spatially localized cha-
otic regions develop in the form of turbulent spirals(TSs)
[11]. The defects are associated with strong amplitude modu-
lations of the background waves and thus act as seeds for the
birth of these TSs. We describe in this paper the appearance
of the disorder in the periodical wave pattern, i.e., the tran-
sition to defect turbulence, until the first TSs appear.

II. EXPERIMENTAL APPARATUS AND DESCRIPTION OF
THE FLOW

Our experimental device is the same as the one of Schou-
veiler, Le Gal and Chauve[12]. The rotating stainless-steel
disk is immersed in a water-filled tank. Its drive shaft passes
through the bottom of the tank and is connected to an electric
motor through a belt. The rotation rateV of the disk is the
control parameter of the experiment and can be varied from
0 to 200 rpm. The top lid of the container is the stationary
disk. The radius of the disks isR=14 cm, and the distanceh
between the disks is set for these experiments to
2.1±0.02 mm(except for some visualizations where a best
contrast was obtained for other very close values ofh). For
this smallh, and the considered rotation rateV, the shear is
nearly constant in the fluid thickness[12] and this is the
reason why this flow is called the torsional Couette flow. In
order to visualize the flow patterns, water is seeded with
reflective anisotropic flakes(Kalliroscope) whose orientation
depends upon the local shear stress inside the flow. As the
surface of the rotating disk is painted in black while the top
one is a plexiglass plate, the flow pattern that develops be-
tween the two disks can be illuminated by a circular neon. A
slight illumination inhomogeneity due to the neon tube elec-
trical connections is barely visible but it will be any way,
filtered out by image processing. Images are captured with a
charge coupled device(CCD) camera placed 25 cm above
this lid. This video camera is connected to a computer, and
spatiotemporal diagrams can be performed in real time.
These diagrams are performed along a radius, with a 25 Hz
or 50 Hz sampling rate that gives between 30 and 60 images
per disk revolution. They have a total duration of 4096 points
in time and 512 points in space. In the following, we will use
the disk rotation period as the time unit, while for figures
describing an evolution in function ofV, a second horizontal
scale based on the Reynolds number(Re=VR2/n, wheren is
water viscosity) will also be presented.

Figure 1 shows an image of the whole disk when the
periodical waves appear and the corresponding periodic
space–time diagram. These spiral rolls were called “SRIII”
by Schouveileret al.and were also observed by San’kov and
Smirnov [13] and Sirivat[14]. Their stability analysis was
also analytically performed by Sank’ov and Smirnov[15]
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who found a critical Reynolds number Reh, based on the
thickness of the fluid layer between 10 an 20. They also
confirmed that the angle of the spirals versus the azimuthal
direction is weak(between −5° and 4°) so that Chauve and
Tavera [16] described them as nearly circular waves. Be-
cause of the weak value of this spiral angle, they are thought
to be type II waves which are created by the combined ef-
fects of viscous and Coriolis forces[17]. Note also that Hoff-
mannet al. [18] calculated “stationary rolls” solutions in the
Ekman Couette layer, corresponding to the SR III waves of
our system. Indeed, as it will be seen in this work, their
radial phase velocity can decrease to zero for some values of
the control parameterV.

For h=2.1 mm, the spatiotemporal diagram recorded at
threshold is presented in Fig. 2(a). The radial wavelengthl
of the spirals as well as their temporal pulsation are well
defined: The waves propagate toward the periphery of the
disk with a constant velocityvf. When increasingV, an
oscillation appears in the dynamical behavior of the spiral
waves as shown in Fig. 2(b). This oscillation is in fact a
precursor of an increasing disorganization observed for
higher values ofV and is, as can be seen in Fig. 2(b), syn-
chronized on the disk rotation rate. Figure 2(c) shows the
spatiotemporal diagram forV=40.5 rpm. It can be observed
that the waves possess now, on average, a very slight veloc-
ity toward the center of the disks:vf is weakly negative and
has thus changed its sign. Moreover, some rolls are found to
disappear at certain locations and at a certain time(see, for
example,t.0.8, r /R.0.82), while some others appear at
different placesst.2,r /R.0.87d. For t=1, the signal pre-
sents a discontinuity for a whole interval inr /R, which re-
flects the passage on the acquisition line of a grain boundary
between two systems of rolls of different orientations. Im-
ages of such defects are presented, respectively, in Figs. 3(a)
and 3(b).

FIG. 1. SRIII for h=2 mm andV=38 rpm clockwisesRe=7.8
3104d (a). Corresponding space–time diagram where a perfect pe-
riodicity is observed closed to threshold(b).

FIG. 2. Spatiotemporal diagrams forh=2.1 mm and(a) V=34.5 rpm sRe=7.083104d, (b) V=36.5 rpm sRe=7.493104d, (c) V
=40.5 rpmsRe=8.313104d, and(d) V=46 rpmsRe=9.443104d.
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The first one is a dislocation[Fig. 3(a)]: The circulation of
the phase of the periodic pattern around the defect is differ-
ent from zero. Figure 3(b) presents a grain boundary: The
rolls on the right-hand side of the image possess a higher
inclination angle. For higher rotation rates, new structures
appear in the flow: These are chaotic domains that we call
TSs and show in Fig. 4. They appear on the large amplitude
modulations associated with topological defects of the SR III
pattern which act indeed as seeds for these turbulent spirals.
Note that these TSs are similar to the turbulent helix(and not
a spiral) of the cylindrical Couette flow or the turbulent band
of the plane Couette flow[11]. Figure 4(b) shows a close-up
of the flow at the turbulent spiral threshold. As it is observed,
the underlying SR III pattern is strongly modulated and
breaks up to let a turbulent domain take place in the flow.
AboveVTS=45 rpm, a transition to turbulence via a scenario
of spatiotemporal intermittency has been described[11].

From the spatiotemporal diagrams, we can measure the
characteristics of the spiral waves. Whereas the wavelength
of the SR III keeps a constant value which is equal to twice
the thicknessh of the fluid layer, the radial phase velocityvf,
as seen before, is found positive for values ofV less than

40 rpm, and negative above this value. Figure 5 shows the
evolution of vf. This is in accordance with the results of
Hoffmann et al. [18] who calculated a vanishing phase ve-
locity for the same kind of waves. Note also the linear evo-
lution of vf with V.

III. TRANSITION TO DEFECT TURBULENCE

A. Evolution of the total number of defects

In order to automatically count the number of defects oc-
curring in the flow pattern, a numerical procedure has been
developed. It is based on the calculation of the Hilbert trans-
form associated with space–time diagrams. As done in Refs.
[19] or [20] the envelope of the wave pattern is computed.
Figure 6(b) presents the spatiotemporal evolution of the en-

FIG. 3. a) Defect forh=2 mm andV=45 rpm, b) defect forh
=2.1 mm andV=43 rpm. Clockwise rotation.

FIG. 4. (a) TSs for h=1.8 mm andV=74 rpm clockwisesRe
=15.23104d. (Note that in Ref.[11], the images have been pub-
lished reversed.) Close-up of a seed of a TS forh=2.1 mm and
V=45 rpm. Clockwise rotation.
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velope of the pattern presented in Fig. 6(a). As can be
checked in Fig. 6(a), the dark regions correspond to depres-
sions in the amplitude of the waves and are clearly associated
with defects. The amplitude of the SR III waves being nearly
zero in the core of the defects, a simple binarization process
(using an adequate threshold) leads to the black and white
pattern presented in Fig. 6(c). It is then quite obvious to
count the total number of defects(independently of their
durations) encountered on average per disk rotation on a re-
gion extended betweenr /R=0.83 andr /R=0.9, where the
contrast of the images is high enough and the waves clearly
observed. To insure the statistical convergence of this mean
defect number, we have checked that the time durations of
the analysis windows were long enough. Figure 7 presents
the evolution of this mean number of defects per disk rota-
tion. ForV less than 40 rpm, the average number of defects
is below 1 per disk rotation period. These defects are gener-
ated by the natural noise present in the SR III pattern close to
its threshold. For values aboveVc=40 rpm, this number in-
creases to 3. A transition occurs aroundVc=40 rpm, which
is the value where the radial phase velocity changes its sign.

The absolute or convective nature of the SR III instability
may be of some relevance to understand this feature. As the
transition experienced by our hydrodynamical system shares
similarities with the transition between phase turbulence and
amplitude turbulence observed in the simulations of the
Ginzburg–Landau equation[21], we plot together with our
experimental data, a relationship similar to the one predicted
in [22] using the facts that topological defects appear when
the phase gradients have Gaussian fluctuations and diverge.
The five coefficients in expression:

kNl = a expS − b

sc3 − c39d
aD , s1d

are simply adjusted to fit our experimental data. The values
a=1, a=5, b=4, c3=V and c39=38.5 rpm, give the best re-
sult and the smooth transition of an Arrhenius type can be
observed in Fig. 7[23], with an inflection point aroundVc
=40 rpm.

B. Time distribution of defect occurrence

Another interesting interpretation of the transition to de-
fect turbulence was performed by Afraimovich and Buni-
movich in Ref. 24 and in the same spirit by Argentina,et al.
[25]. The former consider a simple nonlinear version of a
diffusion equation and show that a defect can be considered
as a homoclinic orbit around a saddle-node critical point.
Therefore, the time between defects corresponds to the
length of the trajectories that leave and then come back in the
vicinity of the fixed point. This durationtlam is thus con-
trolled by the Liapunov exponent of the instability around
the fixed point which possesses a logarithmic divergence at
transition. Figure 8 presents the evolution withV of the
mean lifetimetdef of a defect andtlam, the time separating
two consecutive defects. Contrary totdef which is nearly
constant and equal to 0.1 disk rotation period,tlam shows a
strong evolution withV. Before the transition, this average
time is close to 1.5 disk rotation but climbs up to three rota-

FIG. 5. Radial phase velocityvf as a function ofV. vf.0 for
an outward propagation, andvf,0 when the waves propagate to-
ward the center.

FIG. 6. Close-up of a spatiotemporal diagram forh=2.1 mm
and V=40.5 rpm,(b) envelope of the signal calculated by Hilbert
transform of signal(a), and(c) binarization of envelope signal(b).

FIG. 7. Evolution withV of the mean number of defects per
disk rotation. The dotted line is the curve predicted by Ref.[22]
with a=1, a=5, b=4, c3=V, andc39=38.5 rpm.
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tion periods for the critical valueV=Vc before it decreases
back toward zero for higher values ofV. Superimposed on
the experimental data points, we show also the expected
curves corresponding to defect number evolution given by
Eq. (1) and also the logarithmic divergence similar to the one
calculated in Ref. 24. As it can be seen, both evolutions are
compatible with our data. Note, moreover, that the error bars
given in Fig. 8 represent the standard deviations of the sta-
tistics of these typical times. Thus, a strong increase of the
intensity of the fluctuations oftlam is observed near the de-
fect turbulence threshold.

The complete statistics of the distribution oftlam versusV
has also been calculated. Some examples are presented in
Fig. 9 for four valuesV, where the cumulated histograms of
tlam, that is the numberN of occurrence of durationstlam
larger than a given timeTlam. These semilogarithmic plots
show that these distributions are exponential and a best linear
fit of the experimental data leads to the determination of the
slopes −l of these histograms.

Figure 10 shows the evolution ofl versus the average
numberkNl of defects when the disk rotation rate is varied.
By definition, a Poisson distribution for the occurrence of
defects in time is expected from the previous exponential
shapes given in Fig. 9. In this case, the temporal duration of
each defect is supposed to be zero and thus the evolution of
l versusV would be a line with a slope equal to 1. In Fig.
10(a), we can observe a slight deviation from this linear be-
havior. l, which is the inverse of a characteristic time, is
larger than the expected value. Therefore, the duration used
to calculate the average number of defectskNl should be
reduced. By simply subtracting from the total measuring
time, the cumulated duration of defects, it is possible to cor-
rect the calculation ofkNl by taking into account the average
duration of a defect as presented in Fig. 8(a). This corrected
defect numberkN1l is equal tokNl /1−tdef. Figure 10(b) pre-
sents the new evolution ofl which is closer to the expected
behavior is recovered. This may indicate that the nucleation
of a defect freezes the dynamics of the pattern around the
defect and in a way validates the role of a homoclinic orbit as
in the transition scenario of Ref. 24.

Therefore, it appears that if the distribution of occurrence
of defects is quite well represented by a Poisson law near the
transition threshold, it is necessary to take into account the
effective duration of the defects as their density increases.
This behavior is confirmed by the direct computations of the
probability distributionPsNd of defects when increasingV.

FIG. 8. Evolution of the mean lifetimetdef of one defect(a) and
of the time tlam separating two successive defects(b). The error
bars represent the standard deviation of the statistics. The dashed
line is a fit from relation(1) and the dotted line is the logarithmic
divergence as calculated in Ref.[24].

FIG. 9. Semilogarithmic plot of the cumulated histograms of the
durationtlam for several values of the rotation rateV. Linear fits are
also plotted.

FIG. 10. Evolution of the slopes of the cumulated histograms as
a function of the mean number of defectskNl (a), and as a function
of the corrected mean number of defectskN1l=kNl /1−tdef (b). The
solid lines represent the expected behavior of the Poisson statistics.
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C. Probability distribution of defect occurrence

As can be seen in Fig. 12, the experimental measurement
of PsNd shares some features with the expected general be-
havior of a Poisson distribution: Moreover, it can been
checked in Fig. 11 that for the smallest values ofV, the
standard deviation increases quite proportionally to the
mean. However, if we try to fit the Poisson law on the data,
misfits appear starting atV=42 rpm. We then try to fit our
data with the square Poisson law. Indeed, as shown in Ref.
[26], in close systems, topological defects appear by pairs,
inducing a modification of their probability distribution. But

it can be seen in Fig. 12 that the disagreement is worse. This
is in fact not surprising as our system is not close: single
defects can appear or disappear at the frontier of the SR III
pattern. However, as we saw in the previous section, the time
duration of each defect cannot be neglected as soon as the
density of defects increases. Indeed, we are able to fit the
experimental data by the binomial distribution of events, by
adjusting the mean of this theoretical distribution with the
experimental mean. The elementary probabilityp of the bi-
nomial distribution was then checked to be equal to the ex-
perimental probabilitypdef/pdef+tlam to observe a defect.

D. Generation of turbulent spirals

The transition to a more developed turbulence occurs
when the correlation length of the system becomes of the
same order of the mean distance between defects[9]. Fol-
lowing the same idea, Afraimovich and Bunimovich[24] cal-
culated a limit value of the defect density whentdef.tlam.
With this aim, we calculate the ratio betweentdef and tlam.
As can be seen in Fig. 13, this ratio first slightly decreases
under the critical threshold to defect turbulencesVc

=40 rpmd and then progressively increases. As before, the
error bars represent the standard deviations of the experimen-
tal data. ForV larger thanVTS=45 rpm, we see that some
values of the ratiotdef/tlam can be larger than 1: The distance
between two defects is smaller than their own size. More-
over, these values ofV around 45 rpm correspond to the
apparition of the TSs studied in Ref.[11]. This confirms the
role of the SR III pattern and its transition to defect turbu-
lence, in the generation of the TSs of the torsional Couette
flow.

IV. CONCLUSION

This study was devoted to the statistical description of an
experimental observation of a transition toward defect turbu-
lence in the wave patterns that appear in the gap flow be-

FIG. 11. Standard deviation of the defect distributions2 as a
function of the mean number of defectskNl. The solid line would be
the Poisson law characteristic and the dotted line is given by the
binomial distribution.

FIG. 12. Distribution of probabilityPsNd of defect number per
rotation for several rotation rateV. (p) experiments, Poisson law
distribution (solid line), squared Poisson law distribution(dashed
line), and binomial distribution(dotted line).

FIG. 13. Ratiotdef/tlam versusV. The error bars represent the
standard deviation of the fluctuations. It can be observed that the
ratio is larger than 1 forV.VTS=45 rpm.
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tween a rotating and a stationary disk. Using Hilbert trans-
forms of space–time diagrams, an automatic counting of the
increasing number of defects permits the characterization of
the transition to defect mediated turbulence. This transition
arises as the waves become stationary. Comparisons with
models are quite satisfactory and show that the statistics of
defect occurrence are well represented near the transition
threshold by a Poisson process: Defects nucleate indepen-
dently and their lifetime is small compared to the distance(in
time or in space) that separates them. But as soon as their
density is too large, that is when their lifetime is no longer

negligible in front of their separating time, a binomial distri-
bution of the defect occurrence gives a better fit of the ex-
perimental data. Finally, as the defect density increases,
some strong amplitude modulations of the waves are gener-
ated: These will become seeds for the birth of localized TSs
which are known to be highly nonlinear structures of the
torsional Couette flow. Similar trends relative to the transi-
tion toward turbulence might then be searched in other open
flows such as the plane or the cylindrical Couette flows, pipe

flows, or boundary layers.
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